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Abstract
A review is given of various first-principles studies of the dielectric properties
of crystalline and amorphous transition metal oxides and silicates, which
have drawn considerable attention as potential high-κ materials. After a
brief summary of the principal equations of density-functional theory related
to the dielectric properties of solids, the results obtained for group IVb
M = (Hf, Zr, Ti) and IIIb M = (Y, La, Lu) transition metals crystalline oxides
and/or silicates are discussed.

For the group IVb transition metals, four crystalline phases (cubic,
tetragonal, monoclinic and rutile) of dioxide MO2 with M = (Hf, Zr, Ti) have
been considered in the literature. The results of density-functional theory
calculations of the dielectric properties of three crystalline transition metal
silicates (hafnon HfSiO4, zircon ZrSiO4 and a hypothetical TiSiO4 structure)
are also presented. For the group IIIb transition metals, two crystalline
phases (cubic and hexagonal) of sesquioxides M2O3 with M = Lu have been
investigated within density-functional theory.

Finally, the first-principles results that have been obtained for the
amorphous silicates are discussed. A presentation is given of a scheme recently
introduced which relates the dielectric constants to the local bonding of Si and
metal atoms. It is based on the definition of parameters characteristic of the
basic structural units centred on Si and metals atoms and including their nearest
O neighbours. Applied to amorphous Zr silicates, it provides a good description
of the measured dielectric constants, both of the optical and the static ones.
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1. Introduction

Transition metal oxides (TMOs) constitute a fascinating class of materials of great importance
in solid state physics, as well as in materials science. They exhibit a uniquely wide range
of electronic properties, which yield a rich field for fundamental research and technological
applications.

The main characteristic of TMOs is the incomplete filling of the d shells. The electrons of
these orbitals are responsible for an intermediate chemical bonding: neither strongly covalent
like for the electrons of the p shells, nor purely metallic like for the electrons of the s shells.
Some TMOs have delocalized d bands providing catalytically active surfaces. Others exhibit
narrow d bands with emphasized electron correlations giving rise to diverse properties such
as high-temperature superconductivity, and colossal magneto-resistance. In contrast to free
transition metal atoms or ions, where the d states are degenerate, these levels are energetically
split in the oxides due to the crystal field, provided by the surrounding oxygen ions.

Besides, TMOs come in a variety of crystal structures and may individually exhibit several
phases. This adds to the variation in the spin, charge and orbital states resulting from the
presence of d electrons, to explain the large diversity in the electronic properties and the
potential applications of these materials.

TMOs include insulators, metals, semiconductors, and even superconductors. As an
example of their fundamental interest, the high-temperature superconductors made from Cu
oxides challenge the present understanding of collective electronic behaviour. TMOs are
well known for their ferroelectric, antiferroelectric, and piezoelectric properties, which find
applications in sensors, actuators and transducers,non-volatile memories, and dynamic random
access memories, but also in non-linear optical activity. TMOs can exhibit giant and colossal
magneto-resistance. This is mostly the case for Mn oxides, which are at the origin of new
applications in magnetic-field sensors. The valence changes of the TMOs form the basis for
ionic conductivity, which is the basis for modern batteries and oxygen diffusion. Early glass
was often coloured to simulate gemstones by adding transition-metal oxides to the quartz and
ash. Cu and Co oxides create shades of blue, Mn oxide produces a purple.

In contrast, transition metal silicates (TMSs) have been much less studied so far, with
the notable exception of hafnon (HfSiO4) and zircon (ZrSiO4) which are of great geological
significance. They both belong to the orthosilicate class of minerals, which can be found in
igneous rocks and sediments. Zircon is used as a gemstone, because of its good optical quality,
and resistance to chemical attack. In the earth’s crust, hafnon and zircon are host minerals for
the radioactive elements uranium and thorium. They have therefore been widely studied in the
framework of nuclear waste storage.



Topical Review R359

Very recently, TMOs and TMSs have attracted considerable attention as alternative high-κ
materials to conventional SiO2 as the gate dielectric in metal–oxide–semiconductor (MOS)
transistors. Indeed, the roadmap of the Semiconductor Industry Association [1], which
provides the targets for further improvements of MOS devices, indicates that the thickness
of SiO2 (the present gate dielectric) should be smaller than 10 Å, which represents a layer
of about five Si atoms across. The use of such a thin SiO2 layer is precluded by severe
leakage problems. Current research is therefore focusing on the replacement of SiO2 by high-
κ materials. The increase of the dielectric constant (κ) compared to SiO2 permits the use of
a gate with a larger physical thickness (tphys) while achieving the same capacitance as devices
with a smaller equivalent thickness (teq) of SiO2:

teq = κox

κ
tphys

where κox is the dielectric constant of SiO2. The larger physical thickness solves the potential
leakage problems as well as other issues related to the penetration of the gate dopants in the
substrate when very thin films are used.

However, replacing the SiO2 with a material having a different dielectric constant is not as
simple as it may seem. The material bulk and interface properties must be comparable to those
of silicone dioxide, which are remarkably good. For instance, thermodynamic stability with
respect to silicon, stability under thermal conditions relevant to microelectronic fabrication,
low diffusion coefficients, and thermal expansion match are quite critical.

With these objectives in mind, group IIIb (Y, La, and to a lesser extent Lu), group IVb (Ti,
Zr, and Hf), and group Vb (Ta) transition metal oxides or silicates have been the object of a
considerable number of studies as potential high-κ candidates [2]. The group IIIb TMOs
in the form of M2O3 show many promising and encouraging properties. The beneficial
properties of these oxides arise in part because the mole fraction of cations is higher (40 mol%)
compared to MO2 (group IVb) metal oxides, with a cation fraction of 33.3 mol. The group
IVb (Ti, Zr and Hf) TMOs and TMs (in the form of MO2 and MSiO4, respectively) present
higher dielectric constants (e.g., 80–110 for TiO2 depending on the crystal structure), and
have therefore generated a considerable amount of investigations. Despite the substantial
amount of work that has been reported on Ta2O5 as a gate dielectric, the inherent thermal
instability when in direct contact with Si is a severe limitation. In fact this criterion has proved
crucial in the choice of the next-generation gate dielectrics. In the end, (HfO2)x(SiO2)1−x

and (ZrO2)x(SiO2)1−x systems in the form of amorphous films have emerged has the most
promising candidates.

In the framework of the quest for high-κ materials to replace conventional SiO2 as
the gate dielectric in MOS devices, first-principles calculations constitute a valuable tool in
understanding the behaviour of novel materials at the atomic scale without requiring empirical
data. This is particularly interesting for the early stages of research when a relatively small
amount of experimental data is available. In terms of its predictive accuracy, density-functional
theory (DFT) has proved to be very appropriate for studying the ground-state properties of the
electronic system, such as the structural, vibrational, and dielectric properties on which this
topical review will focus.

However, DFT has one important drawback associated to the high computational cost of
the calculations that are required, which limits both the length and timescales of the phenomena
which can be modelled. Nowadays, it is possible to treat systems containing up to hundreds
of atoms within the most widespread DFT approach based on plane-wave basis sets and
pseudopotentials. For the high-κ materials, it is important to note that transition-metal and
first-row elements (e.g. oxygen) generally present an additional difficulty when treated with
plane-wave basis sets. Namely, their valence wavefunctions are generally strongly localized
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around the nucleus and may require a large number of basis functions to be described accurately,
thus further limiting the size of the system that can be investigated.

A number of first-principles studies have been dedicated to high-κ materials [3–27].
However, only a few of these address their dielectric properties [3–11]. Most of the work has
focused on group IVb transition metal oxides and silicates. First, the crystalline Zr silicate,
namely zircon, was investigated [3]. Next, the tetragonal phase of ZrO2 was considered [4]
and compared to the cubic phase, which had been studied previously for other reasons [13, 14].
The study of the monoclinic phase of ZrO2 [5] completed nicely the analysis of crystalline Zr
oxides. The corresponding work for crystalline Hf oxides was also the object of a thorough
study [6]. Recently, a comparison between Hf and Zr oxides and silicates was also proposed [9]
and extended to Ti oxides and silicates [10]. The behaviour of Hf and Zr oxides at the
interface with Si was investigated [7] through a hypothetical tetragonal Si-epitaxial crystalline
phase obtained by imposing the in-plane lattice constant of Si and adjusting the axial ratio
and internal coordinates. Finally, amorphous Zr silicates were analysed in detail [8] and a
microscopic scheme that relates the dielectric constants to the local bonding of Si and Zr atoms
was proposed. Very recently, group IIIb transition metal oxides have also been investigated
from first principles [11, 12]. From a comparison between the cubic (bixbyite) and hexagonal
forms of Lu2O3, it was suggested [11] that sesquioxides in the bixbyite structure (e.g. Y2O3

and Lu2O3) will consistently have dielectric constants smaller than those in the hexagonal
structure (e.g. La2O3).

For completeness, it should be mentioned that a considerable amount of DFT studies
has also been devoted to perovskite (ABO3) transition metal oxides due to their interesting
ferroelectric/antiferroelectric behaviour. These would deserve a complete topical review on
their own and hence will not be presented here. Instead, a list of useful references [28] is
provided for the interested reader. This list is far from being exhaustive: it mainly includes
papers dealing with the dielectric properties of perovskites or presenting some recent state-of-
the-art calculations.

In this topical review, a presentation is given of the contribution of density-functional
theory to the study of the dielectric properties of crystalline and amorphous transition metal
oxides and silicates considered as potential high-κ dielectrics. Section 2 is devoted to a
presentation of the principal equations related to the dielectric properties. In section 3,
the results obtained for various crystalline systems are discussed. For group IVb transition
metals (M = Hf, Zr, Ti), the dielectric properties are compared between the cubic, tetragonal,
monoclinic, and rutile phases of MO2 oxides and the crystalline silicates MSiO4. For group
IIIb transition metals, the cubic (bixbyite) and hexagonal phases of Lu2O3 are discussed.
Section 4 is dedicated to the study of amorphous silicates. For this purpose, a scheme recently
introduced is discussed which relates the dielectric constants to the local bonding of silicon and
transition metal atoms. The central idea is to define of characteristic parameters for the basic
structural units (SUs) formed by Si and TM atoms and their nearest neighbours. With this
scheme, heavy large-scale calculations, which are beyond current computational capabilities,
are avoided. Applied to amorphous Zr silicates, this scheme provides a good description of
the measured dielectric constants, both of the optical and the static ones. Finally, in section 5,
conclusions are presented.

2. Theoretical background

In this brief overview, only the main equations related to the dielectric properties of materials
will be presented. These are connected to the responses of solid systems to two types of
perturbations: (a) collective displacements of atoms and (b) homogeneous static electric fields.
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These responses can be obtained in the framework of DFT using various methods, which can
be found in the nice review article by Baroni et al [29]. The equations presented hereafter have
been implemented in the PWSCF [30] and ABINIT [31] packages which are both distributed
under the GNU General Public Licence.

For insulators, the dielectric permittivity tensor is defined as the coefficient of
proportionality between the macroscopic displacement field Dmac and the macroscopic electric
field Emac, in the linear regime:

Dmac,α =
∑

β

εαβEmac,β . (1)

It can be obtained as

εαβ = ∂Dmac,α

∂Emac,β
= δαβ + 4π

∂Pmac,α

∂Emac,β
. (2)

In general, the displacement Dmac, or the polarization Pmac, will include contributions from
ionic displacements. In the presence of an applied field of high frequency, the contribution to
the dielectric permittivity tensor resulting from the electronic polarization, usually noted ε∞

αβ ,
dominates. This optical (ion-clamped) dielectric permittivity tensor is related to the second-
order derivatives of the energy with respect to the macroscopic electric field [32].

At lower frequencies, supplementary contributions to the polarization coming from the
ionic displacements must be included. In particular, at zero frequency, the static dielectric
permittivity tensor, usually noted ε0

αβ , is obtained by

ε0
αβ = ε∞

αβ +
∑

m

�εm,αβ = ε∞
αβ + 4π

∑
m

f 2
m,αβ

ω2
m

, (3)

where ωm are the phonon frequencies at the centre of the Brillouin zone (
 point) and fm,αβ

are the oscillator strength tensors1.
The squares of the phonon frequencies ω2

m at the 
 point are determined as eigenvalues of
the dynamical matrix D̃κα,κ ′β , or as solutions of the following generalized eigenvalue problem:∑

κ ′β
C̃κα,κ ′βUm(κ ′β) = Mκω

2
mUm(κα), (4)

where Mκ is the mass of the ion κ , and the matrix C̃ is related to the dynamical matrix D̃
through

D̃κα,κ ′β = C̃κα,κ ′β/
√

Mκ Mκ ′ . (5)

The matrix C̃κα,κ ′β is the Fourier transform of the matrix of the interatomic force constants.
It is connected to the second-order derivatives of the total energy with respect to collective
atomic displacements [32]. The eigenvectors Um(κα) are the atomic displacements for a given
phonon mode m.

The oscillator strength tensors fm,αβ are defined as

fm,αβ =
√√√√ 1

�0

(∑
κα′

Zκ,αα′U∗
m(κα′)

)(∑
κ ′β ′

Zκ ′,ββ ′Um(κ ′β ′)
)

, (6)

where �0 is the volume of the primitive unit cell, and Zκ,βα is the Born effective charge
tensor. That is the proportionality coefficient relating, at linear order, the polarization per unit

1 In the various papers that are summarized in this topical review, different definitions have been used for the oscillator
strength tensors. For simplicity, a form compatible with all of them is adopted. This also presents the advantage that
the oscillator strengths are expressed in the same units as the phonon frequencies.
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cell, created along the direction β, and the displacement along the direction α of the atoms
belonging to the sublattice κ , under the condition of zero electric field. The same coefficient
also describes the linear relation between the force on an atom and the macroscopic electric
field:

Zκ,βα = �0
∂Pmac,β

∂τκα

= ∂ Fκ,α

∂Eβ

. (7)

The Born effective charge tensors are connected to the mixed second-order derivative of the
energy with respect to atomic displacements and macroscopic electric field [32].

The various DFT studies presented in this topical review have been performed using plane-
wave basis sets. More technical details (program, pseudopotentials, energy cut-off, k-point
sampling of the Brillouin zone) can be found in the appropriate references. Besides these
works, some unpublished results (referred to as ‘present work’ in the tables 1–3 below) are
also reported. These calculations have been performed using the ABINIT package [31, 33]
with norm-conserving pseudopotentials [34, 35]. The wavefunctions are expanded in plane
waves up to a kinetic energy cutoff of 30 Hartree. The Brillouin zone is sampled by a 4×4×6
grid [36] is used that results in nine special k-points.

3. Crystalline systems

3.1. Introduction

The structural, electronic, dynamical, optical, and dielectric properties of group IIIb and IVb
transition metal oxides and/or silicates have been the object of several first-principles studies [3–
27]. This topical review focuses on the dielectric properties of these materials, which have
been studied in [3–11] after a brief description of their structural properties.

On the one hand, the group IVb transition metals form dioxides (MO2) which can
adopt quite a variety of crystal structures: monoclinic, tetragonal, cubic, rutile, anatase,
and brookite. Some of these group IVb TMs also appear in nature as crystalline silicates
with the formula MSiO4. The dielectric properties of quite a number of these crystalline
structures have been investigated from first principles: monoclinic HfO2 [6] and ZrO2 [5];
tetragonal and cubic HfO2 [6, 9], ZrO2 [4, 5], and TiO2 [10]; rutile TiO2 [10]; and the silicates
HfSiO4 [10], ZrSiO4 [3], and TiSiO4 [10]. On the other hand, the group IIIb transition metals
form sesquioxides (M2O3) which can have either the cubic (bixbyite) structure (e.g. Y2O3

and Lu2O3) or the hexagonal structure (e.g. La2O3). Using first-principles calculations, the
dielectric properties of Lu2O3 have been studied for both the cubic phase and for a hypothetical
hexagonal phase [11].

All the calculations reported in this topical review have been performed within the localized
density approximation (LDA) to DFT theory [37, 38]. In the case of HfO2, a comparison [6]
has been made between the LDA and the generalized gradient approximation (GGA). The
LDA and GGA results do not differ significantly for the structural and dielectric properties.

3.2. Group IVb transition metals

Titania (TiO2) is by far the most important compound formed by the transition metals of group
IVb, its importance arising predominantly from its use as a white pigment. Three forms exist
at room temperature: rutile, anatase, and brookite. Each of them occurs naturally. Rutile is
the most common form, both in nature and as produced commercially. It is also the most
stable phase: the others transform into it on heating. Note also that all three forms contain
sixfold coordinated titanium atoms. Hafnia (HfO2) and zirconia (ZrO2) undergo polymorphic
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Table 1. Structural parameters for the cubic (c), tetragonal (t), monoclinic (m), and rutile (r)
phases of group IVb transition metal M = (Hf, Zr, Ti) oxides MO2 and for silicates MSiO4: a
comparison between theory and experiment. The lengths are expressed in Å.

M = Hf M = Zr M = Ti

Th. Expt. Th. Expt. Th. Expt.

c-MO2 Ref. [9] Ref. [43] Ref. [4] Ref. [42] Ref. [10]

a 5.11 5.08 5.01 5.09 4.72

t-MO2 Ref. [9] Ref. [43] Ref. [4] Ref. [42] Ref. [10]

a 5.11 5.15 5.02 5.05 4.71
c 5.17 5.29 5.09 5.18 4.93
dz 0.031 — 0.040 0.057 0.070

m-MO2 Ref. [6] Ref. [44] Ref. [5] Ref. [42]

a 5.106 5.117 5.108 5.15
b 5.165 5.175 5.170 5.21
c 5.281 5.291 5.272 5.32
β 99.35 99.22 99.21 99.23
xM 0.280 0.276 0.277 0.275
yM 0.043 0.040 0.042 0.040
zM 0.209 0.208 0.210 0.208
xO1 0.076 0.074 0.069 0.070
yO1 0.346 0.332 0.333 0.332
zO1 0.337 0.347 0.345 0.345
xO2 0.447 0.449 0.450 0.450
yO2 0.759 0.758 0.757 0.756
zO2 0.483 0.480 0.480 0.479

r-MO2 Present work Present work Ref. [10] Ref. [45]

a 4.90 4.80 4.53 4.59
c 3.27 3.22 2.92 2.96
u 0.305 0.305 0.303 0.304

MSiO4 Ref. [9] Ref. [46] Ref. [3] Ref. [47] Ref. [10]

a 6.61 6.57 6.54 6.61 6.21
c 5.97 5.96 5.92 6.00 5.81
u 0.067 0.066 0.065 0.065 0.059
v 0.196 0.195 0.195 0.197 0.189

transformations with changes in external parameters. At high temperature, the compounds
are highly defective and their structure is fluorite type (Fm3̄m). The decreasing temperature
induces a cubic to tetragonal (P42/nmc) phase transition (c–t) at about 2650 ◦C for HfO2 [39]
and about 2350 ◦C for ZrO2 [40]. This transition is followed by a tetragonal to monoclinic
(P21/c) martensitic phase transition (t–m) at about 1650 ◦C for hafnia [41] and about 1150 ◦C
for zirconia [42]. In the cubic and tetragonal phase, the metal atoms are eightfold coordinated
while in the monoclinic phase they are sevenfold coordinated. None of the existing phases
have sixfold coordinated atoms as in the rutile structure.

Hafnon (HfSiO4) and zircon (ZrSiO4) are the crystalline silicates of group IVb transition
metals. They are both naturally occurring gemstones, often colourless. Zircon can also be
yellow, orange, red, blue, brown and green. It resembles diamond in its lustre and fire (because
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Table 2. Electronic (ε∞) and static (ε0) dielectric tensors for the cubic (c), tetragonal (t),
monoclinic (m), and rutile (r) phases of group IVb transition metal M = (Hf, Zr, Ti) oxides MO2
and for silicates MSiO4 (for t-TiO2, the static dielectric tensor cannot be calculated due to the
instability of the phase; see the discussion in the text). The tensors are diagonal in all cases except
for the monoclinic phase, in which it is only block diagonal in y and xz subspaces. For the cubic
phase, the tensor is also isotropic. For the tetragonal and rutile phases of MO2 as well as for MSiO4,
the tensors have different components parallel (‖) and perpendicular (⊥) to the c axis. The total
lattice contribution (εlatt.) to ε0 is also indicated.

M = Hf M = Zr M = Ti

ε∞ εlatt. ε0 ε∞ εlatt. ε0 ε∞ εlatt. ε0

c-MO2 Ref. [9] Ref. [4] Ref. [10]

5.37 20.80 26.17 5.74 27.87 33.61 9.11 128.36 137.47

t-MO2 Ref. [9] Ref. [4] Ref. [10]

‖ 5.13 14.87 20.00 5.28 15.03 20.31 6.66 — —
⊥ 5.39 27.42 32.81 5.74 42.39 48.13 8.81 — —

m-MO2 Ref. [6] Ref. [5]

yy — 10.75 — — 15.56 —
xx — 11.70 — — 16.70 —
zz — 7.53 — — 13.12 —
xz — 1.82 — — 0.98 —

r-MO2 Present work Present work Ref. [10]

‖ 5.19 19.39 24.58 5.54 26.27 31.81 8.57 116.17 124.74
⊥ 4.59 19.03 23.62 4.93 26.71 31.64 7.49 88.79 96.28

MSiO4 From [9] From [3] From [10]

‖ 4.11 6.54 10.65 4.26 7.27 11.53 5.52 11.21 16.73
⊥ 3.88 6.75 10.63 4.06 7.90 11.96 5.56 13.88 19.44

of its high refractive index), yet it has a tendency to chip out at the facet junctions over the
years, so it is not prized as highly. Hafnon is isomorphous with zircon and often occurs
together with it. Because of this resemblance, it is rarely identified separately when found, and
therefore hafnon is hardly known to mineral collectors. In reality, it is much more prevalent
than perceived. These two minerals are members of the orthosilicate group of great geological
significance. Zircon and hafnon have also been widely investigated in the framework of the
disposal of nuclear waste. Indeed, there are two other MSiO4 crystalline silicates occurring
in nature: thorite with M = Th and coffinite with M = U. Besides, PuSiO4 has also been
synthesized. All these MSiO4 silicates exhibit the same crystalline structure, suggesting that
extensive substitution of Zr or Hf by radioactive elements is possible in zircon and hafnon.

The cubic phase of the MO2 oxides of group IVb transition metals M = (Hf, Zr, Ti)
takes the fluorite structure (space group Fm3̄m, No 225), which is fully characterized by
a single lattice constant a. The M = (Hf, Zr, Ti) atoms are in a face-centred-cubic (FCC)
structure, and the O atoms occupy the tetrahedral interstitial sites associated with this FCC
lattice. The primitive unit cell contains one formula unit of MO2 with M = (Hf, Zr, Ti), while
the conventional unit cell has four of them, as represented in figure 1(a).

The tetragonal phase (space group P42/nmc, No 137) can be viewed as a distortion of the
cubic structure obtained by displacing alternating pairs of O atoms up and down by an amount
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Table 3. Frequencies (ωm in cm−1), oscillator strengths ( fm in cm−1), and contributions to the
dielectric constants (�εm ) of the various IR modes for the cubic (c), tetragonal (t), monoclinic (m),
and rutile (r) phases of HfO2, ZrO2, and TiO2, and for HfSiO4, ZrSiO4, and TiSiO4.

M = Hf M = Zr M = Ti

ωm fm �εm ωm fm �εm ωm fm �εm

c-MO2 Ref. [9] Ref. [4] Ref. [10]

F1u 285 367 20.80 280 417 27.87 177 566 128.36

t-MO2 Ref. [9] Ref. [4] Ref. [10]

A2u 315 343 14.87 339 371 15.03 429 382 9.97
Eu (1) 185 247 22.34 153 257 35.48 116i 284 —
Eu (2) 428 272 5.08 449 333 6.91 496 522 13.94

m-MO2 Ref. [6] Ref. [5]

Au (1) 140 8 0.04 181 11 0.05
Au (2) 190 1 0.00 242 38 0.31
Au (3) 255 129 3.21 253 145 4.10
Au (4) 393 194 3.06 347 184 3.54
Au (5) 445 206 2.68 401 264 5.44
Au (6) 529 141 0.89 478 156 1.34
Au (7) 661 133 0.51 571 141 0.77
Au (8) 683 116 0.36 634 10 0.00
Bu (1) 246 149 4.60 224 141 4.97
Bu (2) 262 21 0.08 305 71 0.69
Bu (3) 354 273 7.47 319 289 10.33
Bu (4) 378 190 3.16 355 254 6.43
Bu (5) 449 253 3.98 414 214 3.37
Bu (6) 553 137 0.77 483 196 2.07
Bu (7) 779 169 0.59 711 149 0.55

r-MO2 Present work Present work Ref. [10]

A2u 308 382 19.38 301 435 26.27 204 620 116.16
Eu (1) 193 186 11.64 197 247 19.69 180 459 81.65
Eu (2) 222 104 2.74 302 97 1.30 404 194 2.90
Eu (3) 478 291 4.65 462 312 5.72 502 291 4.23

MSiO4 From [9] From [3] From [10]

A2u (1) 321 201 4.93 348 238 5.90 319 283 9.90
A2u (2) 598 152 0.81 601 122 0.52 606 95 0.31
A2u (3) 983 248 0.80 980 255 0.85 1000 284 1.01
Eu (1) 252 149 4.38 285 183 5.16 303 290 11.54
Eu (2) 395 96 0.75 383 124 1.31 374 0 0.00
Eu (3) 420 70 0.35 422 27 0.05 433 83 0.46
Eu (4) 873 278 1.27 867 287 1.38 877 339 1.88

�z along the z direction, as marked by the arrows in figure 1(b), and by applying a tetragonal
strain. The resulting primitive cell is doubled compared to the cubic phase, including two
formula units of MO2. The conventional unit cell, which is reproduced in figure 1(b), has
four formula units of MO2 with M = (Hf, Zr, Ti). The tetragonal structure is completely
specified by two lattice constants (a and c) and the dimensionless ratio dz = �z/c describing
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Figure 1. Structures of the (a) cubic, (b) tetragonal, (c) monoclinic, and (d) rutile phases of
the MO2 oxide, and of the silicate MSiO4 for group IVb metals M = (Hf, Zr, Ti). A ball and
stick representation is adopted where M = (Hf, Zr, Ti) and O atoms are coloured in light and
medium grey, respectively. For the tetragonal phase of the MO2 oxides, the arrows indicate the
displacements of oxygen pairs relative to the cubic structure. For the silicate, the SiO4 tetrahedra
and MO8 dodecahedra have also been represented.

the displacement of the O atoms. The cubic phase can be considered as a special case of the
tetragonal structure with dz = 0 and c/a = 1 (if the primitive cell is used for the tetragonal
phase, c/a = √

2).
The monoclinic phase has a lower symmetry (space group P21/c, No 14) and a more

complex geometric structure with 12 atoms in the primitive cell. The lattice parameters are
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Figure 2. Structures of the (a) cubic (bixbyite) and (b) hexagonal phases of the M2O3 oxide
for group IIIb metals M = (Y, La, Lu). A ball and stick representation is adopted where
M = (Y, La, Lu) and O atoms are coloured in light and medium grey, respectively. For the cubic
phase, the M1 atoms are coloured with a lighter grey than the M2 atoms and the octahedra centred
on these atoms have also been represented with the same colour scheme.

a, b, c, and β (the non-orthogonal angle between a and c) as shown in figure 1(c). All the
atoms occupy 4e Wyckoff sites (x , y, z) with parameters x , y, and z specified for M atoms and
two non-equivalent oxygen atoms O1 and O2. Note that the atoms of type O1 are threefold
coordinated, while O2 are fourfold coordinated. All M atoms are equivalent and are sevenfold
coordinated. Four lattice-vector parameters and nine internal parameters are needed to fully
specify the structure.

The rutile structure (space group P42/mnm, No 136) has a tetragonal unit cell with two
formula units of MO2 with M = (Hf, Zr, Ti). The metal atoms occupy the body-centred-cubic
positions (2a Wyckoff sites) and the O atoms are at the 4f Wyckoff sites (u, u, 0), as reported
in figure 2(c). The rutile structure is completely specified by two lattice constants (a and c)
and the internal parameter u related to the position of O atoms.

The MSiO4 with M = (Hf, Zr, Ti) crystal has a conventional unit cell which is body-
centred tetragonal (space group I41/amd , No 141) and contains four formula units of MSiO4.
A primitive cell containing only two formula units of MSiO4 can also be defined. The MSiO4

crystal consists of alternating (discrete) SiO4 tetrahedra and MO8 dodecahedra, sharing edges
to form chains parallel to the c direction, as illustrated in figure 1(e). Note that in the MO8

dodecahedra four O atoms are closer to the M atom than the four other ones. The positions of
the M = (Hf, Zr, Ti) and Si atoms are imposed by symmetry: they are located at (0, 3

4 , 1
8 ) and

(0, 1
4 , 3

8 ) on the 4a and 4b Wyckoff sites respectively. The O atoms occupy the 16h Wyckoff
sites (0, u, v), where u and v are internal parameters.

The calculated structural parameters for the cubic, tetragonal, monoclinic, and rutile
phases of group IVb transition metal M = (Hf, Zr, Ti) oxides MO2, and for the silicates
MSiO4 are reported in table 1. For the naturally occurring phases, the available experimental
values have also been indicated. The agreement is very good: the errors on the lattice constants
are smaller than 2%, as is typical for LDA calculations. The structural parameters for Hf- and
Zr-based oxides and silicates are very close,whereas those for Ti-based materials can be 5–10%
closer. It is interesting to take a closer look at this observation.
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Considering the valence electrons only, the electron configurations of Hf, Zr, and Ti
differ only by the principal number of the occupied orbitals: it is 5d26s2 for hafnium, 4d25s2

for zirconium, and 3d24s2 for titanium. Thus, in principle, they should be characterized by
decreasing electronegativities and increasing atomic and ionic radii from Ti to Hf. However,
in the periodic table, the inner transition (rare-earth) elements immediately preceding Hf add
electrons to the inner 4f shell from element No 58, cerium, to No 71, lutetium (it would actually
be more correct to write that the electron configuration of hafnium is 4f145d26s2). Because
the nuclear charge increases while no additional outer shells are filled, there is a contraction
in the atomic size. Consequently, element No 72, hafnium, has a slightly smaller atomic size
than element No 40, zirconium, the group IVb element in the preceding row. This results in
the so-called lanthanide contraction.

As a consequence, while the atomic radius of Ti (1.40 Å) is indeed smaller than for Zr
(1.55 Å), the atomic radius of Hf (1.55 Å) is identical to that of Zr [48]. The ionic radii (M4+)
also present the same anomaly: it is smaller for Ti (0.61 Å) than for Zr (0.84 Å), but it is
essentially the same for the latter and Hf (0.84 Å) [49]. Finally, their electronegativities also
show an anomalous trend with values of 1.23 for hafnium and 1.22 for zirconium, compared to
1.32 for Ti [50]. All this explains the origin of the close similarity between Hf and Zr oxides
and silicates with respect to Ti ones.

Turning to the calculations of the dielectric properties of these crystalline systems, the
electronic (ε∞) and static (ε0) permittivity tensors are diagonal and isotropic in the cubic phase.
Due to the tetragonal symmetry of t-MO2, r-MO2, and MSiO4 crystals, these tensors are also
diagonal for these phases, but they have two independent components ε‖ and ε⊥, parallel and
perpendicular to the c axis, respectively. For the m-MO2, the permittivity tensors are only
block diagonal in y and xz subspaces. Hence, they have four independent components εyy,
εxx , εzz , and εxz . In table 2, the calculated values of ε∞ and ε0 [3–6, 9, 10] are reported for the
cubic, tetragonal, monoclinic, and rutile phases of hafnia, zirconia, and titania, as well as for
hafnon, zircon, and titanon. The total lattice contribution (εlatt. = ε0 − ε∞) is also presented.

In the tetragonal phase, the ε∞ tensor is only slightly anisotropic with about 5% and 10%
difference between the parallel and perpendicular values for hafnia and zirconia. For titania,
it is a bit more anisotropic with about 25% difference between these values. In contrast, the ε0

tensor is highly anisotropic: the value of ε0 in the direction parallel to the c axis is 1.6 and 2.4
times smaller than that in the perpendicular direction for t-HfO2 and t-ZrO2, respectively. For
t-TiO2, the static dielectric tensor cannot be calculated due to the instability of the phase (the
Eu mode with an imaginary frequency tends to break the symmetry imposed in the calculation).

For the monoclinic phase, the optical and static dielectric permittivities have not been
calculated explicitly in [5, 6]. But, it is clear that εlatt. will definitely contribute to the anisotropy
of the ε0 tensor. The ratio between the largest and the smallest increments with respect to the
ε∞ tensor, which are found in the xz plane, is roughly 1.5 and 2 for m-HfO2 and m-ZrO2,
respectively.

In the rutile phase, the ε∞ tensors present the same relatively small difference (12%)
between ε‖ and ε⊥ for the three oxides. For hafnia and zirconia, the anisotropic character is
reduced for the static dielectric permittivity tensor with 4% and 1% difference between its
parallel and perpendicular components, respectively. For titania, ε0 is more anisotropic than
ε∞.

The calculated dielectric tensors can only be compared with experimental values for the
naturally occurring phases (i.e. the cubic, tetragonal, and monoclinic phases of hafnia and
zirconia, for the rutile phase of titania, and for zircon)2. Moreover, a direct comparison is

2 For hafnon, no accurate measurements could be found in the literature.
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very difficult since there are very few data available in the literature, especially for hafnia.
The main problem encountered in the experimental determination of the dielectric properties
is that good quality single crystals are not available.

For the tetragonal and monoclinic phases, the experimental results have been obtained on
polycrystalline samples and must be analysed in the framework of effective medium theory [51].
As a result, a unique value of ε is found without distinction between the various preferential
directions (parallel and perpendicular to the c axis for the tetragonal phase, along the y
direction and in the xz plane for the monoclinic phase). In order to compare these results
with experimental data, an orientational average must be taken.

For hafnia, only measurements of ε0 are reported in the literature. The calculated values
of 26.17 for the cubic phase, ε̄0 = 28.54 for the tetragonal phase, and ε̄0 = 15.47 for the
monoclinic phase3 agree reasonably well with the values of 16 [52] and 20 [53] obtained in
recent measurements on thin films.

For zirconia, an experimental value of ε∞ = 4.8 is reported in the literature for c-
ZrO2 [54, 55], while measured values for t-ZrO2 range between 4.2 [56] and 4.9 [57]. The
theoretical values (ε∞ = 5.74 and ε̄∞ = 5.59 for the cubic and tetragonal phases, respectively)
are larger than the experimental ones by about 10–15%, as often found in the LDA to DFT. For
ε0, the experimental values found in the literature vary from 27.2 [58] to 29.3 [59] for c-ZrO2,
from 34.5 [58] to 39.8 [59] for t-ZrO2, and from 12.5 [60] and 17.0 [61]. For the cubic and the
monoclinic phases, the calculated values ε0 = 33.61 and ε̄0 = 19.65 are slightly larger than
experimental estimates, whereas for the tetragonal phase, the calculated average ε̄0 = 38.86
falls in the range of the experimental data.

For titania, the experimental values of the electronic permittivity tensor for the rutile
phase are 6.84 and 8.43 in the directions perpendicular and parallel to the c axis [62]. The
corresponding theoretical values of 7.49 and 8.57 also present the usual 10% overestimation
of the LDA. For the static dielectric permittivity tensor, the theoretical values are of the same
order of magnitude as the experimental results, which show quite large discrepancies: from
86 and 170 [63] to 115 and 251 [64] for the components perpendicular and parallel to the c
axis, respectively.

For zircon, values of 10.69(3.8) [65] and 11.25(3.5) [66] are reported for the static
(electronic) dielectric permittivity in the directions parallel and perpendicular to the tetragonal
axis, respectively. The theoretical values overestimate of the experimental results by about
10%, as typically observed in LDA. For hafnon, the only possible comparison is with
amorphous hafnium silicates, for which values ranging from 11 to 25 have been reported.

For a deeper analysis, the static dielectric tensor can be decomposed in the contributions
of different modes as indicated in equation (3). Such an analysis reveals the importance of the
frequencies of the IR-active modes and their oscillator strengths.

The contributions of each IR-active mode �εm to the static dielectric constants are
presented in table 3 for all the crystalline oxides and silicates discussed above (except for
the t-TiO2 phase), together with the corresponding frequencies and oscillator strength tensors.
The latter is isotropic for the F1u mode in the cubic phase. In the tetragonal and rutile phases
as well as in the crystalline silicates MSiO4, fm refers to the parallel–parallel component
for the A2u mode, and to the perpendicular–perpendicular component for the Eu modes.
In the monoclinic phase, the Au modes produce contributions to the yy component of the
static dielectric tensor while the Bu modes contribute to the three components in the xz
plane.

3 As mentioned above, the optical dielectric tensor for the monoclinic phase has not been computed in [5, 6]. For the
purposes of comparison with the static dielectric responses, the authors have arbitrarily assumed an isotropic value of
ε̄∞ = 5.0.
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In table 3, the lowest frequency modes provide the largest contributions to ε0 (except for
the monoclinic phase which does not show a clear trend and will be omitted in the following
discussion), even if their oscillator strength ( fm) is relatively small. For instance, the Eu(1)

mode in the tetragonal and rutile phases of hafnia and zirconia contributes much more to the
static dielectric permittivity than the Eu(2) mode in the tetragonal phase and the Eu(3) mode in
the rutile phase, which present however larger values of fm . This emphasizes the crucial role
of the frequency factor in equation (3). That is particularly true for the cubic phase for TiO2

compared to ZrO2 and HfO2. In this case, the frequency of the F1u mode in titanium oxide is
more than 35% smaller than in the other two oxides. This reduced frequency as well as the
increased oscillator strength (see the discussion in [10]) leads to a static dielectric constant
more than four times larger in c-TiO2.

In the tetragonal phase of hafnia and zirconia, the same argument holds to rationalize why
the ε0 tensor is highly anisotropic, while the ε∞ tensor is only slightly anisotropic. Indeed,
in these materials, the A2u has the largest oscillator strength (about twice that of Eu(1) mode)
and the largest mode-effective charge. However, its frequency is about twice as large as that
of the Eu(1) mode, and its contribution to the static dielectric constant is thus roughly twice as
small as that of the Eu(1) mode.

In table 3, it can be observed that the oscillator strengths essentially increase from HfO2

to ZrO2 and from ZrO2 to TiO2, and the same trend holds for the silicates. This can be
related [9, 10] to the behaviour of the Born effective charges Zκ,αα′ and the eigendisplacements
Um(κα), the two quantities that appear in the definitions of fm,αβ given in equation (6). On
the one hand, the Born effective charges show globally the following trend: Z(HfO2) �
Z(ZrO2) � Z(TiO2) and Z(HfOSi4) � Z(ZrSiO4) � Z(TiSiO4). On the other hand, the
displacements of Hf atoms are smaller than those of Zr atoms, which in turn are smaller than
those of Ti atoms, simply because the mass increases from Ti to Hf (as discussed in [9, 10]).

If one now considers the contributions to the static dielectric constant reported in table 3,
it appears clearly that �ε(HfO2) � �ε(ZrO2) � �ε(TiO2) for almost of all the modes,
following the increasing trend of the oscillator strengths discussed above. For a few modes,
however, despite the increasing trend for fm , the corresponding contribution presents exactly
the opposite trend due to an increase of the corresponding phonon frequencies. For instance,
for the Eu(3) mode in the rutile phase, the frequency for ZrO2 is much smaller than for TiO2.
As a result, the increase by 220% of the oscillator strengths is completely compensated by the
rise of 34% in the frequency: in the end, the contribution for TiO2 is 9% larger than the one for
ZrO2. For the crystalline silicates, the phonon frequencies do not change significantly from
Hf to Zr and from Zr to Ti, and consequently the increasing trend in the oscillator strengths
essentially dominates and �ε(HfSiO4) � �ε(ZrSiO4) � �ε(TiSiO4) (see, in particular, the
lowest and highest frequency modes).

In the crystals with tetragonal symmetry (t-MO2, r-MO2, and MSiO4), the lowest and
highest frequency modes for each symmetry representation (A2u and Eu) exhibit the largest
oscillator strengths. Despite their similar fm , the modes of lowest frequency contribute much
more to the static dielectric constant than the modes of highest frequency, the frequency factor
in equation (3) playing a crucial role. The other modes contribute significantly less to the static
dielectric constants.

3.3. Group IIIb transition metals

The sesquioxides M2O3 of group IIIb transition metals are white solids which can be prepared
directly from the elements. Yttria (Y2O3) is one of the most important sesquioxides within the
general class of refractory ceramics. Y2O3 has many applications such as sintering aids in the
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Table 4. Calculated structural parameters for the cubic (c) and hexagonal (h) phases of Lu2O3
oxide (from [11]). The lengths are expressed in Å.

c-Lu2O3 h-Lu2O3

a 10.39 a 3.63
u 0.032 u 0.248
x 0.391 v 0.648
y 0.152
z 0.379

processing of ceramic materials, substrates for semiconducting films, optical windows, and
components for rare-earth doped lasers. Lutetia (Lu2O3) is an important raw material for laser
crystals. It has specialized uses in ceramics, glass, phosphors, and lasers. It can also be used
as catalysts in cracking, alkylation, hydrogenation, and polymerization. Lanthana (La2O3) is
widely used for very high transparency and refractive index in glass manufacturing industry.
It is also used in x-ray image intensifying screens, phosphors, dielectric ceramics, conductive
ceramics, and barium titanate capacitors.

In Y2O3 and Lu2O3, the metal atoms are sixfold coordinated. However, the larger La ion
prefers to be sevenfold coordinated. Therefore, these oxides adopt two different crystalline
structures: Y2O3 and Lu2O3 take a cubic structure, whereas La2O3 is hexagonal.

The cubic phase (space group Ia3, No 206) of the M2O3 oxides of the group IIIb transition
metal is sketched in figure 2(a). The unit cell contains two inequivalent cation sites, M1 at
the 8a Wyckoff site (0, 0, 0) and M2 at the 24d site (u, 0, 1

4 ), and one type of O at the 48e
site (x , y, z). The cubic cell contains a total of 80 atoms. The fluorite-like structure, named
after the mineral bixbyite, can best be viewed as consisting of 64 slightly distorted mini-cubes
with M = (Y, La, Lu) atoms sitting at the centres of 32 of the mini-cubes. The O atoms are at
six of the eight corners of the cube such that an approximate octahedral coordination for the
cation is maintained. The missing O are either at the face diagonal (75%) or at the end of the
body diagonal (25%) of the mini-cube. For mini-cubes having M1 at the centre, three O are
at one face of the cube, and the other three O are at the opposite face. The six M1–O bonds
are equal in length. For mini-cubes containing M2, four O are at one face and the other two at
the opposite face. There are three different pairs of M2–O bonds in terms of their length. On
average, the M1–O bonds are slightly shorter than the M2–O bonds. Each O atom is linked to
one M1 and three M2 atoms in the form of a distorted tetrahedron.

The hexagonal phase (space group P 3̄m1, No 164) is represented in figure 2(b). The unit
contains two M cations at the 2d Wyckoff positions ( 1

3 , 2
3 , u), and three oxygen atoms. Two

of these oxygens occupy the same 2d positions with coordinates ( 1
3 , 2

3 , v), and the remaining
one is located at the position of the 1a site (0, 0, 0).

So far, the dielectric properties of group IIIb transition metal oxides have only been
calculated for M = Lu [11]. Therefore, the focus will be on this material in what follows.
The calculated structural parameters for the cubic and hexagonal phases of Lu2O3 oxide are
reported in table 4. For the naturally occurring cubic phase, the calculated lattice constant is
in excellent agreement with the experimental value of 10.39 [67].

Moving to the calculations of the dielectric properties of these two crystalline systems,
the electronic (ε∞) and static (ε0) permittivity tensors are diagonal and isotropic in c-Lu2O3.
Due to the symmetry of h-Lu2O3, these tensors are also diagonal for these phases, but they
present two independent components ε‖ and ε⊥, parallel and perpendicular to the hexagonal
axis, respectively. In table 5, the calculated values of ε∞ and ε0 [11] are reported for both the
naturally occurring cubic and the hypothetical hexagonal phases.
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Table 5. Electronic (ε∞) and static (ε0) dielectric tensors for the cubic (c) and hexagonal (h)
phases of Lu2O3. In both cases, the tensors are diagonal. For the cubic phase, it is also isotropic,
while for the hexagonal phase, the tensors have different components parallel (‖) and perpendicular
(⊥) to the c axis. The total lattice contribution (εlatt) to ε0 is also indicated.

c-Lu2O3 h-Lu2O3

ε∞ εlatt. ε0 ε∞ εlatt. ε0

4.18 7.80 11.98 ‖ 4.56 12.62 17.18
⊥ 4.65 14.69 19.34

Table 6. Frequencies (ωm in cm−1), oscillator strengths ( fm in cm−1), and contributions to the
dielectric constants (�εm ) of the various IR modes for the cubic (c) and hexagonal (h) phases of
Lu2O3.

c-Lu2O3 h-Lu2O3

ωm fm �εm ωm fm �εm

Tu(1) 86 5 0.04 A2u(1) 261 259 12.34
Tu(2) 114 1 0.00 A2u(2) 497 74 0.28
Tu(3) 126 8 0.05 Eu(1) 221 225 13.00
Tu(4) 132 10 0.07 Eu(2) 494 182 1.70
Tu(5) 146 2 0.00
Tu(6) 183 9 0.03
Tu(7) 218 3 0.00
Tu(8) 300 175 4.28
Tu(9) 339 70 0.53
Tu(10) 354 82 0.67
Tu(11) 374 18 0.03
Tu(12) 391 146 1.74
Tu(13) 429 47 0.15
Tu(14) 499 39 0.08
Tu(15) 526 6 0.00
Tu(16) 578 61 0.14

As already discussed for group IVb transition metal oxides and silicates (see section 3.2),
the contributions �εm to the static dielectric constants can be analysed for each IR-active mode
individually, based on equation (3). These contributions are presented in table 6, together with
the corresponding frequencies and oscillator strength tensors. The latter is isotropic for the Tu

mode in the cubic phase. In the hexagonal phase, fm refers to the parallel–parallel component
for the A2u modes, and to the perpendicular–perpendicular component for the Eu modes.

For the cubic phase, the main contributions arise from the Tu(8) and Tu(12) IR modes at
300 and 391 cm−1. Again, despite their similar oscillator strengths, the Tu(8) mode contributes
more than twice as much to ε0 as the Tu(12) mode due to its lower frequency. Many more
IR active modes exist at low frequency, but their oscillator strengths are very low. The low-
frequency modes involve cationic as well as anionic motion, and their pattern is very inefficient
at producing dipole moments [11], whereas the intense IR modes around 300–400 cm−1 are
predominantly (up to 80% of fm) due to oxygen atomic displacements.

For the hexagonal phase, the largest contributions arise from the lowest frequency A2u

and Eu modes. These two modes show a very close ratio between fm and ωm , therefore their
contributions to the static dielectric constant are very similar (5% difference). In contrast, the
highest frequency A2u and Eu modes have very different contributions to ε0: their frequencies
are practically identical, but their oscillator strengths differ by a factor 2.5. Hence, despite the
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almost perfectly isotropic optical dielectric permittivity tensor, the resulting static dielectric
permittivity tensor shows a bit more than 10% difference between the parallel and perpendicular
components. The large oscillator strength of A2u(1) and Eu(1) modes largely originates from
oxygen-only atomic displacements [11].

The orientational average for the ε0 value in the hexagonal phase is 18.62, which is
more than a factor of 1.5 larger than the ε0 value in the cubic phase. As the main difference
in the dielectric constant between the cubic and hexagonal phases is due to the frequency
and the oscillator strength of the oxygen-related IR modes, it has been suggested [11] that
the preferred structure for the M2O3 sesquioxide determines the intensity of the dielectric
screening. Therefore, disregarding possible additional differences in the Born effective
charges, the hexagonal sesquioxides (e.g. La2O3) present a larger dielectric constant than
the cubic ones (e.g. Y2O3), quite independently of the cation (Y or La). On this basis, the
dielectric constants can be extrapolated to 10–15 for the cubic phases against 20–25 for the
hexagonal ones [11].

4. Amorphous systems

The dielectric properties of transition metal amorphous silicates constitute an issue of
great practical importance. Early experimental measurements tend to show a supra-linear
dependence of the static dielectric constant ε0 on the metal concentration [68, 69]. While
several phenomenological theories address this behaviour [70, 71],a close to linear dependence
seem to prevail based on more recent experimental findings [72, 73].

Addressing this technological issue using DFT calculations requires us to solve the more
general problem of predicting the dielectric properties of amorphous alloys. Indeed, a brute
force investigation of numerous large supercells is beyond present computational capabilities.
A scheme to overcome this difficulty has recently been proposed in the case of amorphous Zr
silicates [8]. In this topical review, the basic ideas of this scheme are described. The results
of Rignanese et al [8] for Zr silicates are discussed and extended to the cases of Hf and Ti
silicates. As a conclusion, a brief comparison between these different systems is given.

The scheme of Rignanese et al [8] is based on the definition of three parameters
characteristic of the basic structural units (SUs) formed by Si and Zr atoms and their nearest
neighbours: the electronic polarizability αi , the dynamical charge Zi , and the force constant
Ci . The values of these parameters are obtained based on DFT calculations of the optical and
static dielectric constants4 for a series of crystal structures (nine models are considered in the
study of Rignanese et al [8]).

From the optical dielectric constant (ε∞), the characteristic electronic polarizability ᾱ of
each crystal structure can be determined using the Clausius–Mosotti relation [71, 73]:

ε∞ − 1

ε∞ + 2
= 4π

3

ᾱ

V̄
, (8)

where V̄ is the average SU volume. The polarizability ᾱ can be considered as a local and
additive quantity, in contrast with ε∞. Hence, the αi values are defined for each SU i , where
i ≡ SiOn (with n = 4 or 6) or ZrOn (with n = 4, 6, or 8), in such a way that

ᾱ =
∑

i

xiαi , (9)

where xi is the molecular fraction. The actual αi values are determined by solving in a least
square sense the over-determined system based on the calculations of ε∞ for the series of

4 Orientational averages of ε∞ and ε0 are actually used.
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Table 7. Polarizability (α in bohr3), characteristic dynamical charge (Z ), and characteristic
force constant (C in Hartree/bohr2) for various structural units, extracted from first-principles
calculations for a series of nine crystalline models [8].

SiO4 SiO6 ZrO4 ZrO6 ZrO8

α 19.68 16.14 37.37 35.35 32.69
Z 4.29 4.92 5.66 7.16 6.73
C 0.3597 0.2176 0.4202 0.0817 0.1153

crystalline models. It was shown [8] that the values of ε∞ derived from equations (8) and (9)
using these αi values are in very good agreement with those computed from first principles,
presenting average and maximal errors smaller than 1% and 2.5%, respectively. It was also
checked for an amorphous model that the value of ε∞ = 3.25 calculated with equations (8)
and (9) compares very well with the first-principles result ε∞ = 3.24. These verifications give
an a posteriori motivation for the use of equations (8) and (9) to model the optical dielectric
constant.

From the difference (�ε) the static dielectric constant (ε0) and the optical dielectric
constant, the characteristic dynamical charge Z̄ and characteristic force constant C̄ of each
crystal structure can be defined:

�ε = ε0 − ε∞ = 4π
∑

m

f 2
m

ω2
m

= 4π

V̄

Z̄ 2

C̄
, (10)

with

Z̄ 2 = 1

N̄

∑
κ

Z 2
κ and C̄−1 = V̄

∑
m

f 2
m

ω2
m Z̄ 2

, (11)

where Zκ are the atomic Born effective charges, ωm and fm are the frequency and the oscillator
strength of the mth mode, and the volume of the primitive unit cell �0 is related to the volume
V̄ and to the number of SUs N̄ by �0 = N̄ V̄ .

By analogy with the polarizability, Zi and Ci values are defined for each SU such that

Z̄ 2 =
∑

i

xi Z 2
i and C̄−1 =

∑
i

xi C
−1
i , (12)

though the locality and the additivity of these parameters is not guaranteed a priori. The
optimal values Zi and Ci are determined in the same way as for αi .

It was shown [8] that, for the series of crystalline models, the values of �ε obtained
by introducing the parameters Zi and Ci in equations (10) and (12) match quite well
those calculated from first principles, though the agreement is not as impressive as for ε∞.
Differences result primarily from the determination of C̄ . By contrast, the values of Z̄ given
by equation (12) agree very well with those computed from first principles, showing an average
and maximal error smaller than 2% and 3%, respectively. A posteriori, C̄ appears to be less
local and additive. In fact, it can be demonstrated that the locality of C̄ is closely related to
the dynamical charge neutrality of the SUs [8].

For the amorphous model, which was not used to determine the Zi and Ci values, the
agreement between the model and the first-principles �ε is excellent, with an error smaller
than 1% [8]. Indeed, the scheme is more accurate for disordered systems,where the localization
of vibrational modes is enhanced and the dynamical charge neutrality appears better respected.

The parameters αi , Zi , and Ci , reported in table 7 for the case of Zr silicates [8],
fully determine the dielectric constants of an amorphous system of known composition in
terms of SUs. It is important to note the following two points. On the one hand, the three
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Figure 3. Dielectric constants (ε∞ and ε0) as a function of composition x for amorphous
(ZrO2)x (SiO2)1−x . The hatched region corresponds to results derived from the model scheme
and reflects the indetermination of the number of ZrO6 units. The upper curve delimiting the
band corresponds to structures entirely composed of ZrO6 units, while the lower curve represents
a smooth transition from a structure composed of ZrO4 units at x = 0 to one composed of ZrO8
units at x = 0.5, without the occurrence of any ZrO6 unit. The references for the experimental
data are: � [74], • [72], ◦ [73], � [68, 69], [75], � [76], and 	 [49].

parameters of Zr-centred SUs all contribute to enhancing the dielectric constants over those of
Si-centred ones of corresponding coordination5. This is clearly at the origin of the increase of
ε∞ and ε0 with increasing Zr concentration. Second, while the polarizability αi of a given SU
(Si- or Zr-centred) steadily decreases with increasing coordination, such a regular behaviour
is not observed for the parameters Zi and Ci determining �ε. On the other hand, Zi and Ci

concurrently vary to enhance the contribution of ZrO6 units, which are the SUs giving the
largest contribution to �ε in amorphous Zr silicates.

Using the scheme given by equations (8)–(10) and (12), it is now possible to estimate ε∞
and ε0 for amorphous (ZrO2)x(SiO2)1−x as a function of Zr composition (0 < x < 0.5). Using
measured densities for Zr silicates [74], ε∞ can be easily calculated as a function of x [8]. In
this case, the effect of Zr coordination is negligible since the various Zr-centred units have
close α values compared to SiO4 (table 7). As plotted in figure 3, the theoretical values [8]
agree very well with available experimental data [73, 74].

In order to apply the scheme for �ε, additional information on the cationic coordination
is required. The Si atoms are assumed to be fourfold coordinated [8]. The coordination of Zr
atoms is less well determined. Recent EXAFS measurements [70] tend to show that the average
Zr coordination increases from about four to about eight for Zr concentrations increasing from
x ∼ 0 to x ∼ 0.5. In figure 3, the calculated ε0 for amorphous (ZrO2)x(SiO2)1−x as a function
of x [8] is plotted together with the available experimental data [68, 69, 72, 73, 75].

The characteristic parameters used to calculate ε0 change noticeably with the local
environment of Zr atoms. Therefore, the indetermination with respect to their coordination
leads to a range of possible values for the theoretical values as represented by the dashed
band in figure 3. Several suitable distributions of three representative structural units (ZrO4,
ZrO6, and ZrO8) have been considered [8]. The upper curve delimiting the band in figure 3
corresponds to structures entirely composed of ZrO6 units. The lower curve is for amorphous
systems which do not contain any ZrO6 units. The average Zr coordination varies linearly from

5 In table 7, the value of C for SiO4 apparently leads to a higher contribution to �ε than that for ZrO4. This is an
artefact of the approach used to determine the Zi and Ci .
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Table 8. Polarizability (α in bohr3), characteristic dynamical charge (Z ), and characteristic force
constant (C in Hartree/bohr2) for MO6 and MO8 structural units with M = (Hf, Zr, Ti), extracted
from the calculations for the r-MO2 structures on the one hand, and for the c-MO2 and MSiO4
structures on the other hand. (Note: The parameters extracted from the MSiO4 structures take into
account the values already obtained for SiO4 SUs which are reported in table 7.)

HfO6 ZrO6 TiO6 HfO8 ZrO8 TiO8

α 35.28 34.54 33.49 32.21 31.66 32.87
Z 7.19 7.45 8.59 6.77 6.95 7.70
C 0.1278 0.1050 0.0437 0.1630 0.1418 0.0778

four to eight between x = 0 and 0.5, with concentrations of ZrO4 and ZrO8 SUs varying at
most quadratically. Note that the upper part of the band matches well the recent experimental
data [72, 73]. The earlier data [68, 69, 75] cannot be explained. Figure 3 shows that, for
a sufficient amount of ZrO6 units, values of ε0 at intermediate x can indeed be larger than
estimated from a linear interpolation between SiO2 and ZrSiO4. However, in agreement with
recent experiments [72, 73], the theory indicates that the extent of this effect is more limited
than previously assumed [68–70].

The scheme of Rignanese et al [8] can also be applied to Hf and Ti silicates which are very
similar to Zr silicates, provided that the value of the characteristic parameters are adapted. In
this respect, the comparison between the various crystalline oxides and silicates carried out
in the preceding sections provides very useful informations. Indeed, it is possible to extract
the characteristic parameters of MO6 and MO8 SUs from the results obtained for the r-MO2

structures on the one hand, and for the c-MO2 and MSiO4 structures on the other hand. These
values are reported in table 8.

Note that the results in tables 7 and 8 for ZrO6 and ZrO8 structural units are in good
agreement despite the fact they have been obtained using almost completely different sets of
crystalline systems. The only common system is the zircon crystal. In table 7, the parameters
are extracted from the results for crystalline systems that all include Si-centred SUs, whereas,
in table 8, the reference crystals do not include such structural units (apart from zircon). This
further increases the confidence in the validity of the scheme.

Basically, all the parameters in table 8 show a similar trend. On the one hand, the
enhancement of the dielectric permittivities (both electronic and static) will be larger for the
Ti-centred SUs than for Hf- and Zr-centred ones. On the other hand, the MO6 units produce
a larger enhancement than MO8 units. Hence, for the amorphous silicates, the same kind of
considerations should apply. In particular, for Ti amorphous silicates, the dielectric constants
should be considerably larger than for Hf and Zr amorphous silicates. First, for Ti, the MO6

SUs tend to be more stable (as in rutile) than the MO8 ones, whereas, for Hf and Zr, the MO8

SUs prevail. Second, all the characteristic parameters of Ti-centred SUs produce a larger
enhancement than Hf and Zr ones.

5. Conclusions

This topical review has focused on the contribution of density functional theory to the study
of the dielectric properties of crystalline and amorphous transition metal oxides and silicates
considered as potential high-κ dielectrics. First, the principal equations of DFT related to the
dielectric properties have been presented to allow for a thorough analysis of the results of the
calculations. Then, the various studies existing in the literature have been discussed for group
IVb M = (Hf, Zr, Ti) and IIIb M = (Y, La, Lu) transition metals crystalline oxides and/or
silicates.
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For the transition metals M = (Hf, Zr, Ti) belonging to group IVb, investigations have
been reported on four crystalline phases of the dioxides MO2 (cubic, tetragonal, monoclinic,
and rutile) and on MSiO4 crystalline silicates. A comparison between Hf, Zr, and Ti based
oxides and silicates has been proposed. A globally increasing trend emerged for the static
dielectric constant when substituting Hf by Zr, and Zr by Ti. This behaviour has been explained
primarily in terms of the larger oscillator strengths.

The first-principles results for two crystalline phases (cubic and hexagonal) of sesquioxides
M2O3 with M = Lu (group IIIb transition metal) have been summarized. Based on these
calculations, it has been discussed that sesquioxides in the cubic structure (e.g. Y2O3 and
Lu2O3) will consistently have dielectric constants smaller than those in the hexagonal structure
(e.g. La2O3).

Finally, the dielectric properties of amorphous silicates have been discussed.
A presentation has been given of a simple scheme, recently introduced, which connects
the optical and static dielectric constants of the silicates to their underlying microscopic
structure. The theory supports recent experiments which find a close to linear dependence
of ε0 on the Zr fraction x , and shows that higher dielectric constants can be achieved by
increasing the concentration of ZrO6 structural units. These results have been extended
to Hf and Ti amorphous silicates. The predominance of MO6 in the latter and the larger
enhancement produced by Ti-centred structural units suggests that the dielectric constants
should be considerably larger for Ti-based systems than for Hf and Zr ones.
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